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Projection of the Danzer tiling 
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lnstitut fdr Theoretische Physik der UniversitP, D-72076 Ebingen, Germany 

Received 9 December 1993, in final form 28 April 1994 

Abstract. We derive the icosahedrally-symmetric oclahedral tiling of Danzer. denoted by 7@), 
locally from the tiling 'TczO of h e r  el d, obtained by icosahedral projection from the root 
lattice D6. Moreover. we determine all windows such that the riling To) can bc obtained by 
projection from the 60 root lattice DG. We reconstruct all vertex wnfigurations of the tiling 'Tm) 
using the tools of the projection method. 

1. Introduction 

The icosahedrally-symmetric Danzer octahedral tiling that we will denote by 7 O )  was 
obtained by Danzer by inflation [1,2]. The four tiles of the tiling T ( O )  are presented in 
figure 1 (see also [21). The tiling fl) is locally equivalent [3] to Danzer tetrahedral tiling 
121: dissecting Danzer's octahedra (figure 1) by all their mirror symmetry planes, one obtains 
Danzer's tetrahedra, whereas in every tetrahedral tiling the tetrahedra can be glued together 
to form octahedra in a locally unique fashion. 

From diffraction experiments, a class of icosahedral quasicrystals has been described 
[4] in terms of the Z module projected from the face-centred hypercubic F-lattice in six 
dimensions, the root lattice D6 [5]. Models for the atomic positions and diffraction properties 
of these quasicristals are facilitated by the construction of tilings projected from this lattice. 

The icosahedrally-symmehic tiling T(2F) has been obtained by projection from the six- 
dimensional (6D) root lattice Ds 161. The scale of lengths is defined by the D6 basis vectors 
e2 - el, e3 - e2, e4 - eg, eg - e4, e6 - e5, -e5 - e6 expressed by the 6D standard base 
ei, (ei, e j )  = Jij, i, j = 1, 2. . .6 .  Associated with the root Iattice D6 there are two mutually 
dual cell complexes, the Voronoi complex V and the Delaunay complex V*, each with a 
full hierarchy of m-dimensional boundaries (m-boundaries) P and dual (&m)-dimensional 
boundaries P*, respectively (m 6 6) .  The dual boundary Pa of the boundary P of the 
Voronoi domain is defined as the convex hull of all lattice points whose Voronoi domains 
contain the boundary P. The boundaries obey the duality relation [7,8] 

P; E P; e, P t  2 P2. (1) 

Under the action of the icosahedral group, the 6D space decomposes into two irreducible 
orthogonal subspaces Ell and EL. In what follows, the tiling 'T"n will be built from the 
parallel projections of 3-boundaries P E V ,  the tiles. The tiles, their faces, edges and 
vertices will be coded by so-called windows [3] which are perpendicular projections of dual 
boundaries P* E V*,  dual to the preimages of the tiles, their faces edges and vertices in 6D, 
respectivly. For the coding, the relation for 3-boundaries PI, P 2  E V 

(2) 
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Figure 1. Dmzer's Octahedra ((X)) where X = K, C. B. A. ( ( B ) )  and ( ( A ) )  are not convex. 
Thc h e  different types of vedces 0. b and c are denoted by black, double white and single 
white circles. respectively (Danrer denoted them 2, I and 3, respectively). The numbers 1 and 
2 on the figure denote two different vertices of the same type on the same octahedra but with 
different space angle. For w faces denoted by 0;~. i = I ,  2 .3 see figure 2. 

following from the results of [SI is essential. The subscript 11 denotes the projection onto 
El, I onto EL. 

The vertex set of T(" is obtained [6] by the parallel projection of certain holes of the 
lattice Dg. The holes [5] are the vertices of its Voronoi domains. The choice of the holes 
to be projected onto Ell is made with the help of atomic surfaces, or vertex windows, in 
the form of icosahedrally projected Delaunay cells into EL. The canonical choice of the 
representative Delaunay cells forming a fundamental domain of the root lattice is determined 
by the fundamental simplex [5 ] .  It turns out that in the case Dg one has three canonical 
Delaunay cells, denoted by Do, Db and D', as dual objects to the canonical holes at 
a = ~(111111), b = (100000) and c = ~ ( l l l l l i ) ,  respectively [6]. Any other Delaunay 
cell D"' of type a, b or c, respectively, in the lattice ~ 6 ,  may be written as 

(3) 

where x = a, b or c, respectively. The canonical Delaunay cells intersect in 5-boundaries: 
D" n Db = p;, D" r l  Dc =a* and Db n Dc = y; (for the notation see [6]). 

Dx' = DXtr = Dx + f, f E D6, 

The procedure for constructing the tiling TcZn is: 
(0) Choose a 'shift vector' SS E EL, suppose SA E 0;. 
(1) Find all dual 3-subboundaries P'' of D" such that SI c Py. 
(2) Construct in Ell the vertex configuration U[ 
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Figure 2. The tiles of the tiling Ten. Edges run dong five-fold (- - -) or three-fold (- . -) 
axes. Scaling5 by POWM of T with respect to ihe standard length ax marked for each type of 
aris. Vertices of type a, b. c are denoted as in figure 1.  @ill. i = I ,  2 , 3  and Vlll and VZU are 
2D faces. 

(3 )  Run along each edge starting at the centre all of the vertex configuration U;. Lifit 
the next vertex xi into 6D to a hole x'. It is going to be of a different type, say, of type b. 
Determine t = x' - b E D6. 

(4) Let si = SI - t i ;  then si E i3: return to (1) replacing SI by s; and Q by b. 
The tiles in the tiling Tczn are [6] four pyramids, acute and obtuse rhombohedra, 

presented in figure 2 by unfolding the polytopes into a plane. To describe the edges of the 
projected polytopes, we introduce the symbols: @denotes an edge of length (2 / (5  +2))'/* 
running along any two-fold axes, @an edge of length ( 3 / ( 2 ( r  f 2)))'/' along three-fold 
axes and @an edge of length 1/& along five-fold axes$. Powers of r in front of these 
standard edges denote corresponding scalings. The faces of the tiles are either rhombus- 
shaped with edges @ and short diagonal @ or triangular-shaped with edges scaled from @ 

t The lifting of the vertices of Lhe tiling I", from 3D space Ell into Ds-hples is unique 

T = (1 + J3)/2. 
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and @ All faces of triangular shape, @111, @q, @?I (figures 1 and Z), and only these, also 
appear in the Danzer tiling. 

For our investigation, the rhombus-shaped faces in 7(m which do not appear in 
are of particular interest. In the D6 Voronoi complex there are triangular and square two- 
boundaries denoted by @ and *, respectively. Under the action of the group Db x, I h  there 
are two non-equivalent two-boundaries @I and Yz. They are such that when projected to 
El, @I and Wz appear as two congruent rhombi but with a different distribution of vertices 
of type a and c, see figure 3. One can show that any rhombus face in the tiling T(”) can be 
identified as ~ I I I  or @zll from its local surrounding, i.e. the ‘decoration’ of rhombus faces 
by the appropriate vertices can be locally derived (1) Any pyramidt has a uniquely fixed 
basis: CII and Dll have a basis of type W I U ,  All and Ell of type W~11. (2)  Any Fll appears in 
the tiling with three Du pyramids [9], 41 U3D11 (figure 4(u)). The tile 41 shares with every 
DII the face Yl1. (3) Any GII has at least one rhombus face in common with a pyramid 
which identifies all its vertices. 

In what follows we derive the tiling 7”) from the tiling T(z“ and give in detail its 
projection from the root lattice Dg. By the unique lifting of the vertices of 7”) into the 
Deholes, we determine the vertex windows for the three type of Danzer vertices denoted 
by 1, 2 and 3. We identify the Danzer vertices: 2, 1 and 3 with the representative holes 
of the DG-lattice U = ~(111111). 6 = (loOoO0) and c = i ( l l l l l i ) ,  respectively, as 
anticipated in figure 1. The vertex windows for 7(D) have been previously numerically 
derived by van Ophuysen [IO]. We determine all the vertex configurations for 7” by the 
projection-window method. 

Figure 3. Rhombus faces lylli and Yqi, Edges NU along five-fold axes of slandard length 
@= Icilll. j = 1.2, .. . .6 .  

2. Derivation of the tiling 7(’) from the tiling T(*‘) 

We present the results of the local derivation of the tiling T(D) from the tiling T(2m and 
produce all the windows needed for the projection of 7(D). In the proofs of the derivation 
and determination of the windows, one proceeds in Ell and EL simultaneously, eliminating 
in Ell the rhombus faces rUg and lyzll. In order to decide which pairs of tiles in Ell (in the 

7 Notice lha the top of each pyramid A M ,  B I ,  CII or Dli is of lype b. 
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Figure 4. (a) The FI U 3011 configumtion: (b) ule 3811 configuration. 

ease of T ( 9 ,  two three-boundaries of Voronoi cell projected into Ell) can appear in the tiling 
with a common two-boundary i = 1,2,  we have to study the corresponding dual four- 
boundary Wi., and the full content of its three-subboundaries. The threesubboundaries of 
lu; that have non-trivial mutual intersection in El give rise to the appearance of their dual 
three-boundaries in the tiling 7cv with a common * i l l .  This criterion is the consequence 
of relations (I) and (2). 

2.1. Local derivation of Danzer's tiling from the tiling T(zF) 
The local derivation of Tm) from 'TcW can be performed in five steps which we describe 
in the following using some simple observations on the tiling 7czB  without proving them 
in detail. 

( 1 )  The obtuse rhombohedron F, always appears in T c z W  with three Dll pyramids, each 
sharing with 41 one of its faces lu,~~, (cf figure 4(a)). This is simultaneously a vertex 
configuration of type c (c.1, see [9]). The configuration FII U3011 is to be transformed into 
a 3BU configuration (according to figure 4(b)):  

Fir U 3011 --t 3Bll. (5) 

By this transformation, the vertex configuration c. 1 disappears, therefore the window for the 
vertex configuration which is the window F; has to be subtracted from the vertex window 
D;. The result nuns out to be as shown in figure 1 1 .  

(2) The remaining Dl1 pyramids with no lu111 faces in common with some obtuse 
rhombohedron all appear in pairs sharing lulll such that they are mirror images of each 
other with respect to the plane containing lu111. These pairs are transformed into Danzer's 
octahedra ((A)): 

(3) The acute rhombohedron GI, can be subdivided into a new vertex configuration of 
type b: 

GI, + 3A1 U 3Cll (7) 

see figure 5. The window for the new vertex configuration of type b, that is the window 
G;, has to enlarge the vertex window D!, see section 2.3. 
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Figure 5. The acute rhombohedron Gp transformed into the configuration 3All U 3Cl. 

< K > ‘...a.’. qZl1 

Figure 6. The pyramid Blf ansformed into Dmzer’s octahedron ( (8 ) )  and the pyramid A i .  

(4) All pyramids of type Bll. originally existing in the tiling Ell, and those obtained after 
step (1). are transformed into Danzer’s octahedra ((B)) and the pyramid of the shape A,:  

BII -+ ( ( B ) )  U Ail (8) 

see figure 6. The new vertex of type b, (i) stemming from the transformation of the originally 
existing Bu in El, has the window B l ;  and (ii) stemming h m  the transformation of the 
tiles Ell obtained after step (1) has the window Ff. See section 2.3. 

(5a) As a consequence of the previous steps, all pyramids All originally existing in Ell 
and those obtained after steps (3) and (4) appear in pairs with the common face Yzlb. These 
pairs are transformed into Danzer’s octahedra ((K)): 

2411 -+ ( (W).  (9) 

(5b) All pyramids Cg, originally existing in Ell and those obtained after step (3), appear 
in pairs with the common face ~ , I I .  They are mutually mirror images with respect to the 
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Figure 7. Transformations in T(2R leading to Danzer's octahedron ((C)) 

plane containing the common Ylll. These pairs are hansformed into Danzer's octahedra 
((C)) as in figure 7 

2cu - ((C)). (10) 
After these transformations, a tiling is obtained which consists of Danzer's octahedra 

in a face-to-face arrangement, i.e. Danzer's tiling. 
The inverse procedure, a local derivation of the tiling 7@fl from the tiling 7@), is 

not possible: an inspection of the windows of 7@) tiles (see section 2.2) shows that each 
face is orthogonal to a five-fold axis with respect to the icosahedral group acting in 4. 
On the other hand. the 7(2fl-windows are bounded by faces orthogonal to five-fold and 
threefold axes. Hence, it  is not possible to construct all 7(2~-windows by finite unions 
and intersections of 7'D)-windows. This implies the impossibility of a local derivation [3] 
of the tiling 7@') from the tiling 7@). 

2.2. The windows for the files of T(') 
One determines the windows of Danzer's octahedra from those of 7(w [6,11] following 
the transformation procedure outlined in section 2.1. 

( 1 )  The octahedron ((C)) is obtained wherever a rhombus YIII occurs with a GII or CII 
tile in 799,  Therefore, 

(11) 
(2) The octahedron ( ( A ) )  is due to the pairs of pyramids Dll in 7(m sharing a face 

((C))' = C; U C l .  

Win: 

((A))' = D t  f lD&.  (12) 
(3) The octahedron ( ( B ) )  is induced either by the pyramid BII or by the obtuse 

rhombohedron Fll; there are two possible Fll for a certain ( ( B ) ) :  

( ( B ) ) "  = F;, U B; U F&. 

((K))" = Y;l = G;, U G;L U B; U A; U FTL U F;. 

(13) 

(14) 
For the notation see figures 8, 9 and 10. They depict the T@)-windows embedded in the 
four-boundaries qTL and Y!L. 

(4) The octahedron ((K)) is positioned just at the rhombi Y211 in 7(2fl: 
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Figure 8. The window ((C))' in EL for Danzer's 
octahedron ((C)) in El. 

Figure 9. The window ( ( A ) ) m  in EL for Danrcr's 
octahedron ( ( A ) )  in El. 

Figure 10. The window ((E))' for Damer's octahedron ( ( E ) )  and the window ((K))" for 
Danzer's octahedron ((K)). 

2.3. The vertex windows for the tiling of ?.(D), windows for tiles of ICD) and their orbit 
representatives with respect to 0 6  x Jh reduced to the vertex windows of I(" 
The vertex windows for the tiling To) are labelled by $L, ht and hi. 

a dodecahedron with the edge of length @ 

consequence of step (1) in the local derivation in section 2.1. 

The vertex window for the vertices of type a is the same as for 10, f i  = D;. It is 

The vertex window for the vertices of type c is presented in figure 11. Its form is the 

Table 1. Volumes of D I ,  D i , D ;  and Di, b!, 6i given in units of V 

x DY) ap 
n 6(7r+4) 6(7r+4) 
b 10(r+l) 30(57+2) 
c 10(Sr+3) 30(r+l) 

The vertex window for the vertices of type b, is presented in figure 12. Its form 
is obtained after adding the windows for the additional vertex configurations at appropriate 
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Flgurel& T@ 
denoted. The origin of lhe coordinate system is in the centre of the polytope D i .  

yindow 6;. Subtracted representative window F i  = (1 ,2,3,4)  = 
( ~ ( I I I I ~ I ) .  I ( ~ i ~ i ~ i ) ,  5 ( i ~ ~ i ~ ~ ) .  & i i i i i i ) ) l  for the vertex  figuration C . I  [g] is 

Figure 12. The venex window Iji is a dodecahedral extension of the iwsahedraJ Delaunay 
cell Df .  A representative part of this extension is shown. 

places. The additional vertex configurations of type b appear after the transformation steps 
(3) and (4) in section 2.1. 

The volumes of the vertex windows of the tilings I(D) and I('q are given in table 1 
in units of V = $(1/(5 + ~'3)~)~''. 

The positions of the windows for Danzer's octahedra in $L and Sl can be easily 
determined from the positions of the four-boundaries WrL and W.& in D: and Df. Their 
positions within WrL and W& are given in figures 8, 9 and 10 in section 2.2. In this 
section we also expressed the windows ((C))"', ( (A)) '" ,  ( (B))"'  and ((K))"' through three- 
boundaries F J ,  G;, A;,  E; ,  C; and DT, the windows for tiles of the tiling 'T('0, by the 
relations (1  l), (12). (13) and (14), respectively. We use these relations in order to determine 



Table 3. Orbit representatives of windows ( (T))w with respect to the action of Ihe groups Ih 
and Ds x ,  I h  rguced to the vertex window Df; and corresponding Danzer's octahedra ((X)). 
The centre of D: is b = (100000) icmahedrally projecled to El. Notations as in table 2, 

the positions of the windows of Danzer's octahedra in the vertex window b!. The results 
are presented in tables 2-4 
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Table 4. Orbit representatives of windows with respect to the action of the groups la 
and 0 6  x I  Ib Educed to the vei7ex window 0; and corresponding Danzer's octahedra ((X)). 
The centre of D; is e = i ( l  I 1 1  17) icosahedrally projected to EL. Notations as in (a). 

2.4. Vertex configurations of the tiling 7(D), construction of 7(D) 

We rederive all representative vertex configurations of Danzer's octahedra using the tools of 
the projection method (vertex windows and windows for Danzer's octahedra). The results 
are in agreement with those obtained by Danzer [l] and Kasner [12] through inflation. 
For each type of vertex configuration (table 5) we list the number of tiles attached to 
it, the symmetry of the configuration and its relative probability. The three globally 
icosahedrally-symmetc Danzer tilings (from one point), that produce starting the inflation 
from icosahedrally-symmetric vertices 7a, 5b and 9c, can be locally derived from the three 
corresponding globally icosahedrally-symmetric tilings of I(" such that their projection 
starts with icosahedrally-symmehic vertices of type a,  b and c, respectively [9 ] .  

If one wishes to construct the tiling 70) by projection, the procedure given in the 
introduction for the case of generalized windows should be applied. The frequencies of the 
tiles of T@) determined by projection and inflation are clearly in agreement. 

3. Conclusion 

We have shown that Danzer tiling 7") can be locally derived from the tiling 7(*m of 
Kramer et al. Moreover, we have established the tools needed to obtain by projection 
from the 6D lattice Ds. Meanwhile, Roth [13] and Danzer et al [14] have independently 
shown the equivalence of Danzer tiling with the tiling of Steinhardt and Socolar [15]. 
Consequently, from the present paper it becomes evident that Steinhardt-Socolar tiling can 
also be obtained from the D6 lattice by projection. 

from the tiling T@), is not 
possible. 

The inverse procedure, local derivation of the tiling 



4516 P Kramer et a1 

Table 5. VeRex configurations of Dannzer octahedra tiling determined by projection. Octahedra 
((X)). X = A.  B .  C. K are additionally described by their vertices. The index by some veltias 
accounts for the different space angles (see figure 1). For convenience, the relative frequencies 
are normed CO 93 + 1 4 9 ~ .  

number ( I  b CI c2 a bt k c ai a2 b c n b c orient. frequency 

a. I 6 I 5 Cz, : 30 5 + 2 0 z  
a.2 3 6 3 3 C," : 20 IO 
0.3 3 3 5 m : 60 10 
0.4 5 5 CS, : 12 -2t 4r 
a.5 6 2 I 1  1 Cz, : 30 - 1 5 1  101 
0.6 5 20 CS,: 12 14-8r  
n.7 30 g : l  - 4 + 3 r  

b. I 
h.2 

b.5 30 

c.  I I 
c.2 
c.3 
c.4 
C.5 
c.6 
e.7 
c.8 
c.9 

I 1 Cz. : 30 45 + 70r 
3 3 CsU : 20 IO + 20r 

5 
1 16 15 

3 13 10 
5 

IO 
5 

6 1 Cii  : 30 
5 C5" : 12 

Ih  : I 

4 1 C?" : 30 
5 5 C5" : 12 

11 & : 3 0  
15 C3" : 2 0  
8 m:60 
5 CS" : 12 
20 Czv :30 
25 c*: 12 
30 I h :  I 

5 
-2 + 4r 

2 + r  

5 +  10r 
6t8r 
25 - 10r 
-30 + 2Or 
-30 + 20r 

14-8r 
65 - 407 
-58 t 36r 
1 8 - l l r  
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